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Modeling Joint Effects of Mixtures of Chemicals on Microorganisms Using
Quantitative Structure Activity Relationships
- Phase II: Study Using Activated Sludge Cultures -

ABSTRACT

Toxicity of 50 organic chemicals to activated sludge microorganisms was determined using
the respirometeric technique. Using this experimental database, models for predicting toxicity
(IC50 values) were developed using QSAR techniques. Toxicity measurements were also
made for sixteen multi-component mixtures. The joint effects of organic chemicals in these
mixtures were analyzed by three different approaches. Using the QSAR models developed
from single chemical studies, an approach was developed to analyze and predict joint effects
of chemicals in mixtures. The results of this study indicated that the joint effects could be
considered simply additive for the different classes of chemicals tested. Using the results
obtained during the first phase of this project for a surrogate test microorganism- Polytox,
toxicity correlations were established between activated sludge and the test cultures.

INTRODUCTION

Acute and chronic toxicity testing is a major component in the NPDES permitting process.
The concept of whole effluent toxicity testing has been introduced into this program due to
the realization that a mixture of several chemicals may exhibit greater toxicity than they
would individually. While current Water Quality Standards are based on single chemical
toxicity assays, in future, controls may be set based on the joint effects of mixtures of two or
more chémicals. Non-point sources, industrial effluents, leachates and contaminated
groundwaters are all known to contain several chemicals in mixtures. Thus, an ability to
analyze and predict joint effects of mixtures of chemicals on microorganisms and other
aquatic life forms will be of considerable benefit in managing the environmental hazards of
synthetic chemicals.

Several ecological researchers, notably from Europe, have studied the effects of mixtures of
chemicals on fish (Ref 1 - 20). Hardly any studies have been reported on the joint effects of
multiple chemicals on microorganisms. As microorganisms are employed in municipal waste
treatment by environmental engineers, and are also present in the natural environment, it
would be of interest to be able predict such effects on microorganisms. This research was
undertaken in our laboratories to determine and predict joint effects of binary and multiple
chemical mixtures on three classes of organisms of interest to environmental engineers. This
interim report covers the results of the Phase II study during the second year, and compares
the results obtained during the first two years.

OBJECTIVES OF PHASE II STUDY

The ultimate objective of this 3-year research is to develop an approach to predict the joint
toxic effects of mixtures of organic chemicals to microorganisms. Towards this end, the
following tasks were identified for Phase II during the second year:

a) measurement of single chemical toxicity to activated sludge (A/S) microorganisms and
establishing the reproducibility of the respirometeric test procedure;

b) development of QSAR models to predict single chemical toxicity to A/S
microorganisms;

c) establishing correlations between the surrogate test culture- Polytox, (assayed during
the first year) and A/S microorganisms;

d) measurement and analysis of toxicity of multi-component mixtures to A/S
microorganisms and verifying simple additivity;

¢) developing an approach to predict joint effects of mixtures of organic chemicals to
A/S culture based on the molecular structures of the components of the mixtures.

h




Work during the third year will focus on the effects of mixtures on anaerobic cultres to
predict joint effects on them using molecular structures of the components and the surrogate
test culture results.

EXPERIMENTAL APPROACH

Respirometeric test procedure-

All tests were conducted using research grade chemicals as supplied by the manufacturers
without any further purification. The toxicity tests were run on a 12-reactor computer
interfaced N-Con Respirometer as detailed in Appendix 1. The test procedure is detailed in
Appendix II. The percent inhibition caused by a toxicant at a given concentration was
determined by comparing the oxygen uptake rate of a toxicant-free control reactor against the
rates of eight other reactors spiked with different concentrations of the toxicant. This rate was
in turn obtained from the slopes of the linear portion of the oxygen uptake curves generated
by the respirometer for each reactor. The % inhibition values were plotted against the
respective concentrations, and from these plots, the IC50 values were then determined [ICS0
is the concentration of the toxicant at which a 50% inhibition is caused]. The above procedure
is illustrated schematically in Fig 1.

Data output from respirometer Calculation of % inhibition % Inhibition vs. Concentration

Oxygen uptake, mg/L % Inhib.
Control So 0 50%

Conc.l S1 I1=(So-S1)+So
Conc.2 Conc2 S2 I2=(So-S2)+So

. L D.

Conc.n

0 Ti IE

Figure 1. Schematic Dlustration of Procedure to Find IC50

Test Chemicals-

A total of 50 organic chemicals (see Table II) chosen from the list of “chemicals of concern to
the US Air Force” (Proposer’s Guide to AFOSR Research Program, US Air Force, 1986)
were assayed. Of those chosen, 17 are listed as priority pollutants by the US EPA (Federal
Register, 46 CRF, 2264 1981). The selected chemicals included simple and halo-substituted
alkanes and aromatics, alcohols, esters, ketones, amines etc. These chemicals spanned a wide
range of aqueous solubility, Henry’s Constant and octanol-water partition coefficient. Such a
variety of chemicals would enhance the robustness and the utility of the QSAR models. The
same set of chemicals had been assayed during the first year using the surrogate test cultures.

From this list of 50 chemicals, 40 were used as “training chemicals” to develop the models
and the remaining 10 were reserved in a “testing set” to test the predictive ability of the
models. The ten testing set members (ID # 10, 13, 17, 20, 23, 30, 34, 37, 40 and 43 in Table
II) were selected as far as possible to include “new types” of chemicals such as 2,4 dimethyl
phenol and cyclohexanone, which were not represented in the training set. These chemicals
contained combination of multiple molecular features (e.g., by the aromatic alcohol, 2,4
dimethyl phenol) that were represented in the training set individually (e.g., by the aromatics
and the alcohols).

e.. L] L

Con‘cﬂ.h" ‘Sn In=(So-Sn)+So

ICS0 Conc., mg/L

In the multi-component mixture tests, ten mixtures cach containing 10 different chemicals
mixed in equitoxic proportions were assayed. For each mixture, one control reactor and six
spiked reactors were run. The six reactors received 0.04, 0.06, 0.08, 0.1, 0.12 and 0.14 Toxic
Units of each of the ten components. Additional six testing mixtures, each containing 8
different chemicals, were also assayed. In this case, the six spiked reactors received 0.05,
0.075, 0.1, 0.125, 0.150 and 0.175 Toxic Units of each of the components.

2.




Activated sludge test cultures-

The A/S test cultures were obtained daily from the aeration tank of the nearby Las Cruces
Wastewater Treatment Plant that receives mainly municipal sewage. The MLSS and MLVSS
of activated sludge varied from 1,200 to 2,600 {mg/L] and 1,020 to 1,970, [mg/L)

respectively. The reactors received 10 mL of activated sludge each.
MODELING APPROACH

The single chemical toxicity results from the 40 chemicals placed in the testing set were used
to develop QSAR models. Molecular connectivity indexes were calculated for the chemicals
following the algorithms developed by Kier and Hall and modified by Nirmalakhandan
(1988). Simple and multiple step-wise regression analysis procedures were used to derive the
QSAR model with IC50 values as the dependent variable. The IC50 values calculated from
the QSAR models were then compared with the experimentally measured values.

In the multi-component mixture studies, the joint effects were analyzed using three concepts:
Toxic Unit, Additivity Index, and Mixture Toxicity Index. The validity of these concepts was
further verified using the results of the 8-component testing set. Finally, the QSAR models
developed from single chemical tests werc used to predict the concentrations of the
components in the 8-component mixture that would cause 50% inhibition. These predicted
concentrations were then compared with the experimentally measured concentrations.




RESULTS AND DISCUSSION
Reproducibility Studies-

studies were conducted to establish the reproducibility and the variability in the
are with similar results obtained in Phase 1 for Polytox
surrogate cultures. Four “cold start” runs were made for four selected chemicals to evaluate
the variations in the final IC50 values. From the results summarized in Table 1, it can be seen
that the Polytox testing procedure is more consistent yielding ICS0 values with an average
standard deviation of 16.4 while the A/S testing procedure yielded slightly higher variations
with standard deviation of 22.6. These variations are comparable to those reported by Blum
(1?89) for activated sludge cultures and Microtox, and may be considered acceptable for

experimental IC50 results and com

microbial toxicity work.
Table 1. Reproducibility of IC, Values from Polytox and Activated Sludge Tests
Chemical Test results Statistics
un un un3 Rund “Mean
Toluene 12 0.870 0990 0.872 0.940 0918 0.058
IC50 [mg/L] 207 176 186 186 188.8 130
2,4 Dimethyl- 12 0953 0.800 0907 0.871 0.883 0.065
phenol IC50 [mg/L] 240 207 228 260 2338 222
Cyclohexane 12 0964 0968 0902 0.900 0.934 0.038
IC50 [mg/L)] 74 68 62 58 65.5 7.0
Ethanolamine 12 0955 0.981 0916 0.928 0.945 0.029
IC50 [mg/L] 160 105 120 132 1293 233
Mean SD of IC50 values~ 16.4
Toluene 12 0.839 1000 0969 0963 0943 0071
IC50 [mg/L] 292 322 328 322 3159 165
2,4 Dimethyl- 12 0964 0.765 0.957 0.987 0918 0.103
phenol IC50 [mg/L) 224 259 199 286 2422 382
Cyc'lohexane 12 0917 0980 0.842 0.942 0.920 0.058
1C50 (mg/L] 133 146 167 150 1489 13.7
Ethanolamine 12 0.897 0987 0905 0.986 0.944 0.049
IC50 [mg/L]) 115 154 146 167 145.5 22.2
Mean SD of IC50 values  22.6
IC50 Results-

Experimentally determined IC50 values for the 50 chemicals for the surrogate test culture,

Polytox, (in Phase I) and for A/S cultures (in Phase II) are shown in Table II.




TABLE II. Comparison of IC, Values for Polytox and Activated Sludge

T # Chemical Type® __ IC30 Values [m

olytox ct. sludge
T Benzene Aro 68

2  Toluene Aro 207 292
3 Xylene Aro 140 166
4  Ethylbenzene Aro 220 222
5  Chlorobenzene Aro 350 155
6 1,2 Dichlorobenzene Aro 135 49
7 1,3 Dichlorobenzene Aro 40 63
8 1,4 Dichlorobenzene Aro 6 14
9 1,24 Trichlorobenzene Aro 23 35
10 2,4 Dimethyl phenol Aro 240 224
11 Methylene chloride Hal 1,750 1,994
12 Dibromomethane Hal 1,110 1,572
13 Carbon tetrachloride Hal 325 432
14 1,2 Dichloroethane Hal 685 1,385
15 1,1,1 Trichloroethane Hal 415 659
16 1,12,2 Tetrachloroethane  Hal 180 197
17 1,2 Dichloropropane Hal 500 861
18 Bromochloromethane Hal 1,300 2,672
19 Bromodichloromethane Hal 9% 249
20 Chlorodibromomethane Hal 425 206
21 Ethylene dibromide Hal 520 1,271
_ 22 1,2 Dichloroethylene Hal 350 1,249
- 23 Trichloroethylene Hal 500 770
24 Tetrachloroethylene Hal 175 299
25 Cyclohexane Alk 74 -, 133
26 Pentane Alk 70 150
27 Hexane Alk 38 47
28 Heptane Alk 18 58
29 Octane Alk 8 60
30 Bis (2-chloroethyl) ether Alc 1,600 3,025
31 Ethanol Alc 40,000 26,311
32 Propanol Alc 7,200 10,875
33 Pentanol Alc 2,325 3,528
34 Octanol Alc 126 194
35 n-Butyl acetate Alc 3,750 1,649
36 Isobutyl acetate Alc 1,600 2,156
37 n-Amyl acetate Alc 440 1,031
38 Ethyl acetate Alc 5,400 5,427
39 Acetone Alc 48,000 48,619
40 Methyl ethyl ketone Alc 1,900 1,873
41 Methyl isobuty! ketone Alc 2,600 2,811
42 Methyl n-propyl ketone Alc 4,500 4,267
43 Cyclohexanone Alc 3,750 5,452
44 n-Butyl amine Ami 90 111
45 t-Butyl amine Ami 85 90
46 Diethylamine Ami 104 100
47 Acetic acid Ami 287 299
48 Cyclohexylamine Ami 60 103
49 Ethanolamine Ami 160 115
50 Triethanolamine Ami 900 741

* Aro- aromatic; Hal- halogenated aliphatic; Alk- alkanes; Alc- alcohols, esters, ketones and ethers;
Ami- amines.
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Correlation of IC50 Between Polytox and A/S-

Very good correlation was found between Polytox IC50 values and A/S IC50 values. Figure 2
shows the correlation between the two cultures, split by the S different families of chemicals
assayed. The IC50 [unit: mg/L] relationship between the two cultures is given by:

log IC50, 5 = 0.412 +0.889 log IC50p,,,, (1)
n = 50; r = 0.960; 2 = 0.922; SE =0.225.

% 50
g O 10 Aromatics
38 . .
é 40 1 ° 14 Halogenated aliphatics °
’% | ¥ 5Alkanes A
7 © 14 Alcohols etc 0,00 °
3 3.0 - . A
s i A 7 Amines
2 o0
é 204 v M, 4
v D
& ]
2 104
8 .
3 | Line of overall fit: 1 = 0.922
<]
g 0'0 ] ' Lo I . r - L] ﬁ L
- 0.0 1.0 20 3.0 4.0 50

log ICSo Values from Polytox Tests [mg/L]
FIGURE 2. Comparison Between Polytox and Activated Sludge IC50 Values

Similar comparison has been done between IC50 values from the Microtox Test, and from
AJS cultures by Blum (1989) for 34 chemicals similar to those tested here. The correlation

between the two was reported as “fair” with 12 = 0.69 and SE = 0.48. In comparison, the
Polytox results appear to correlate with A/S results more closely than the Microtox Test

results with higher r2 and lower SE. This is as expected because, Polytox culture is formulated
from selected streams from A/S whereas, the Microtox Test organisms are of marine origin.

The relationship given by Eq. 1 shows that, in general, the Polytox culture is more
sensitive than the A/S culture. When a paired t-test was done to test if the difference of the
means of the IC50 values from the two tests was significant, the A/S logIC50 values were
found to be greater than Polytox logIC50 values by 0.129 at 95% confidence interval. Thus,
the toxicity predicted by Polytox could be a conservative estimation.

Based on these findings, for chemicals belonging to congeneric classes similar to those tested
IA/erSc, Polytox may be used as a good surrogate test culture for rapid estimation of toxicity to
culture.




Single Chemical QSAR Models-
The results from the training set of 40 chemicals were used to develop QSAR models for’

IC50 [unit: mM/L] for A/S cultures using the three common approaches: the molecular
connectivity (MCI) approach; the Linear Solvation Energy Relationships (LSER) approach;
and, the logP approach.

The MCI A h:
In the MCI approach, a different QSAR model was developed for each family:

Aromatic Family:

log IC50 = 3.364 - 1.191 1" Q)
n=8; r=0.887; 2 = 0.787; SE = 0.294.

Halogenated Aliphatics Family:

log IC50 = 2.781 - 0.446 ¥ 3)
n = 10; r = 0.868; r2 = 0.753; SE = 0.252.

Alkanes Family:

log IC50 = 1.103 - 0.381 1y* (C))
n=5;r=0.839; 2 = 0.703; SE = 0.181.

Alcohols, Ketones and Esters Family:

log IC50 = 3.663 - 0.892 1y¥ (5
n=9;r=0.934; 2 = 0.872; SE = 0.243,

Amines and Acids Family:

log IC50 = 0.819 - 0.327 ¥ (6)

n=6;r=0.852; r2=0.726; SE = 0.142,

Statistical details of Eq. (2) to (6) are shown in Appendix III, Table A-III-1 to A-III-5 and
Figure A-III-1 to A-III-S respectively for the 5 families. The fitted values are plotted against

the experimental values as illustrated below in Figure 3, showing an overall 1 of 0.869.

10 Aromatics
14 Halogenated aliphatics

5 Alkanes

14 Alcohols, ketones and esters
7 Amines and acids

H
I
» + xoo

Line of perfect fit
Overall 2 = 0.869

L] 1 v ]

1 2 3 4 5
Exp. IC50, [log(mM/L)]

FIGURE 3. Comparison Between Fitted and Experimental ICS0 Values for A/S.

QSAR-predicted IC50, [log(mM/L)]




The LSER A h:
the LSER approach, a single QSAR model was first developed to cover the entire data

set. Sblvatochromic parameters used in this analysis are listed in Appendix IV, Table A-IV-1.
The QSAR model resulted in the following:

log ICSOA/S =1.721 -2.578 Vi/100 + 0.372 n* + 1.138 § - 0.067 0))
n = 47; r = 0.605; 12 = 0.366; SE = 0.706.

Statistical details of the above equation are shown in Table A-IV-2. Since the quality of
the fit was not acceptable, casewise regression was done as in the case of the MCI approach.
The different LSER models for the different families are summarized in Appendix IV (Table
A-IV-3 to A-IV-7). While in some cases, the LSER models are superior to the MCI models,
this approach is limited by the nonavailability of the solvatochromic parameters for many of
the common chemicals. When LSER model parameters are not readily available in the
literature, they have to be experimentally determined or estimated using groundrules proposed
by Kamlet and coworkers (1983). The estimated values are however error-prone and the
groundrules are not well established. This is a serious drawback of the LSER approach,
whereas, in the MCI approach, the MCI values may be readily calculated using a rigid set of
algorithms for all families of chemicals without any error.

The logP Approach:
In the logP approach, the entire data set was first used to develop a QSAR model, resulting in

the following:

1og IC50,, ¢ = 1.469 ~ 0.391 logP (8)
n =48; r=0.641; 2 = 0.411; SE = 0.654.

Statistical details of the above equation are shown in the Appendix V, Table A-V-1. Again,
casewise models were developed as before, which are summarized in the Appendix V (Table
A-V-2 to A-V-6 and Figure A-V-2 to A-V-6). ) )

Comparison of the 3 QSAR Approaches
The quality and utility of the three QSAR models were compared on the basis of the adjusted

r2. The reason for the use of adjusted 1 is that different data sets were modeled using
different numbers of independent variables. It is calculated as follows:

Adjusted rz = _(L]’_l__’l)ﬁ_:_?_).
(n-p-1)
where,

n = N? of cases used in analysis for 12, and
p = N? of independent variables.

The adjusted r for the three QSAR models for the 5 families are tabulated in Appendix VI,
Table A-VI-1. As can be seen from this Table, for the aromatic and the alkane families,

adjusted 1? of LSER and logP models are higher than that of the MCI model; but, for all the

other families, adjusted 12 of the MCI models are higher than those of the LSER and the logP
models. However, based on the limited availability and the uncertainty of the solvatochromic
parameters in the LSER approach and the logP values on one hand, and the ease of
calculation and the error-free nature of the connectivity indices on the other hand, it is
recommended that the MCI models have a better utility value to the practicing engineer.
Thus, further modeling in this research utilized only the MCI approach.




Comparison Between MCI Models for AlS and Polytox
The same chemicals used in the QSAR model development for A/S had also been assayed
in Phase I using the surrogate test culture-Polytox. The IC50 results from that study yielded
MCI QSAR models for Polytox, which are very similar to those obtained for A/S in Phase II:
Aromatic Family:
log ICS0 = 3.258 ~ 1.133 1y¥ )
n=9;r=0.852; 2 =0.726; SE = 0.311.
Halogenated Aliphatics Family:
log IC50 = 2.670 ~ 0.448 %" (10)
n=12;r=0.942; r> = 0.887; SE =0.141.
Alkanes Family:
log IC50 = 1.851 — 0.765 ¥ (11)
n=S5; r=0.999; r? = 0.999; SE = 0.018.
Alcohols, Ketones and Esters Family:

log IC50 = 3.690 — 0.896 1y (12)
n = 14; r = 0.954; r2 = 0.910; SE = 0.246.

Amines and Acids Family:

log IC50 = 1.045 - 0.470 1xV (13)

n=6;r=0957; r2=0.915; SE = 0.101.

The MCI QSAR models for the two cultures are remarkably similar in form, quality, and
significance. While supporting the earlier finding of good correlation between the two
cultures, the similarity of the QSAR models also suggests that the chemicals act on these two
organisms by very similar mechanisms. This finding may be of significant value in analyzing
joint effects of mixtures of several chemicals.

Prediction of IC50 Values for Testing Set

The 10 chemicals reserved in the "testing set” were used to compare the predicted IC50
values by two approaches. In the first approach, Equation (1) was used to predict IC50 values
for A/S based on surrogate test culture- Polytox IC50 values. These results are presented in
the Appendix, Table A-V-1I 1 and A-VII-2. In the second approach, Equations (2) to (6) were
used to predict IC50 values for A/S based on the QSAR models.

These predicted IC50 values are then compared, in turn, against the respective experimentally
measured values for A/S. The agreement between the experimental and the predicted values

was found to be very good as shown in Fig 4: in the first approach, r? = 0.901, SE = 0.154;
and in the second approach, 12 = 0.844, SE = 0.217.

However, as shown in Figure 4, the QSAR-predicted line is not significantly different from
the line of perfect prediction, but the Polytox-predicted line is significantly different. This
implies that the predictions of QSAR models are almost numerically identical to the
experimental values, and are better than the predictions of the Polytox model. In evaluating
these comparisons, it should also be noted that the QSAR approach does not require any

experimental inputs whatsoever. In addition, the 12 and SE of this agreement are comparable
to those found in the experimental inhibition percentage vs. concentration plots suggesting
that the uncertainty of these predictions are comparable to those of the experimental data
themselves. Thus, for organic chemicals belonging to similar congeneric classes as those
t:;éed here, the above QSAR models can be expected to predict satisfactory ICS0 values for




O Polytox-Predicted QSAR-Predicted line

2- 0 QSAR-Predicted

Predicted log ICSO Value for
Activated Sludge [mmole/L]
v

-1 0 1 2 3
Experimental log IC50 Value for Activated Sludge [ mmole/L]
FIGURE 4. Comparison Between Predicted and Measured IC50 Values for A/S.

Applicability of QSAR Models

It is commonly thought that the composition and characteristics of A/S cultures vary
considerably from plant to plant and from time to time. If that is the case, the utility value of
QSAR models in rapid estimation of toxicity would be very difficult and questionable, or
even impossible. To investigate the variability in A/S IC50 values, the limited toxicity data of
A/S cultures reported in the literature by different workers at different times and locations
were compiled and compared with predictions of QSAR models developed in this study.

The dataset reported by Blum (1989) contained 47 chemicals all of which belonged to the
5 families assayed in this study. Out of 47 tested chemicals reported by Blum (1989), 15 had
been assayed by us, and the other 32 were "new" chemicals. Volskay and Grady (1988) had
reported toxicity of 15 chemicals using laboratory grown activated sludge by synthetic feed.
They adapted the OECD Method 209, using inhibition of oxygen uptake rate as the measure
of toxicity. Out of 15 chemicals assayed by Volskay and Grady (1988), 11 were similar in
molecular structure to ours. Of these 11 chemicals, 7 had been tested in this study, and thus 4
were "new"” chemicals. In all therefore, including 47 chemicals from this study, a total 108
data points were available for comparison, representing IC50 values of 83 different
chemicals, 36 of them not used in the QSAR model development. The QSAR models, Eq. (2)
to (6), were used to predict the IC50 values for these 83 chemicals. Table A-VII-1 in
Appendix VIII shows these predictions and the experimental IC50 values. Figure 5 illustrates

excellent agreement between the two, spanning over 4 orders of magnitude, with an P =
0.798 at P = 0.0001.

-10 -
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J Source n ¢
5 + This study 50 0.863
4 X Blum 47 0.742 +

. O VolskayandGrady 11 0918 X x

Observed ICq, for A/S [log (mg/L)]
w
1

LA | B | B

0 1 2 3 4 5 6
QSAR-predicted IC, for A/S [log (mg/L)]

FIGURE 5. Comparison Between Predicted and Observed IC50 Values for A/S.

This finding is highly significant in two aspects: 1) the "variation in activated sludge” has
minimal effect on toxicity response to common organic chemicals, and 2) the QSAR models
can satisfactorily predict toxicity to A/S. In addition, it has to be mentioned that even though
the QSAR models were derived from training set of 40 chemicals, their predictions for the
total 43 "new" testing chemicals appears quite satisfactory. In these 43 "new" testing
chemicals, some contained combined molecular features that were represented in the training
set individually. For example, the testing set contained 10 halogenated phenols (Blum, 1989)
whereas the training set did not contain any phenols at all, but only aromatic structures and
alcoholic structures separately. However, these independently represented molecular features
are well encoded by the connectivity indexes and the QSAR models enabling satisfactory
predictions for chemicals containing combined fragments. This ability of the QSAR models
also adds further credence to the predictive approach.
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Multi-Component Mixture 7 oxicity
The multi-component mixture studies were similar to those done for Polytox during Phase 1.
These results are summarized in Table III. Details of these experimental results are presented
in Appendix IX and X. The hypothesis of simple additivity in these mixtures was tested using
three concepts: the Toxic Unit (TU) concept; the Additivity Index (AI) concept; and, the
Mixture Toxicity Index, (MTI). While the average TU, Al and MTI values deviate from the
expected values of 1, 0 and 1, this anomaly is belicved to be due to the variability of the
activated sludge cultures. While the simple additivity was verified for the Polytox microbial
test cultures in Phase I, that for activated sludge appears somewhat questionable. This finding
will be further analyzed and resolved during the third year of the project. Nevertheless, these
findings are similar to those reported in the literature for mixture toxicity studies on fish
(Konemann 1981 a, b, c)

TABLE III. Summary of Analysis for Simple Additivity for 10- and 8-component Mixtures.

Mixture] Chemicals in Mixture Joint Effects Analyzed by
N® of components Al
n TU=3 TU| Al=M - 1| MTI=1-logM/lo
T ES R IERIT 10— 137 037 00|
10C-2 }4,5,10,36,32,33,12,18,22,23 10 1.60 0.60 0.79
10C-3 }40,41,35,36,32,33,4,5,10,17 10 1.70 0.70 0.77
10C-4 140,41,35,36,32,33,4,5,10,2 10 1.50 0.50 0.83
10C-5 |40,41,35,36,32,33,31,43,34,17 | 10 1.84 0.84 0.73
10C-6 |40,41,35,36,31,43,12,18,1,2 10 1.54 0.54 0.81
10C-7 140,41,43,31,32,33,12,18,22,23 | 10 191 091 0.72
10C-8 {40,41,35,36,4,5,17,43,34,17 10 1.83 0.83 0.74
10C-9 ]40,41,35,36,4,5,17,18,1,2 10 1.57 0.57 0.80
10C-10]40,41,43,4,5,17,12,18,22,23 10 1.31 0.31 0.88
8C-1 140,41,35,36,32,33,12,30 8 5.17 4.17 0.21
8C-2 140,41,35,36,12,18,1,2 8 1.59 0.59 0.78
8C-3 [40,41,35,36,32,33,22,23 8 1.47 047 0.81
8C4 ]4,36,32,33,12,18,34,17 8 1.53 0.53 0.80
8C-5 }4,10,36,32,33,18,22,23 8 1.37 0.37 0.85
8C-6 ]40,35,21,15.4,5,10,2 8 1.48 0.48 0.81
Average 1.81 0.81 0.

ID #s are same as in Table II.
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Prediction of mixture concentrations

Assuming that the joint effects of the chemicals being tested are according to simple
additivity, the approach proposed under the modeling section was applied to verify the
predicted concentrations of the components in the mixtures. To predict the concentrations,
perfect additivity, i.c XTU = 1 was assumed. In addition, the individual IC, values for the
two cultures were estimated using the QSAR models reported above for the two cultures. The
concentration of chemical i in the N-component mixture is then predicted as = (XTU/N) x
IC5;» N being 8 in this study. These predicted concentrations are compared against the
experimentally determined concentrations in Figure 6. The overall agreement between the
predicted and experimental concentrations for the two cultures (48 pairs of data points) is fair
with 2 = 0.76, SE = 0.31 for Polytox and 12 = 0.81, SE = 0.26 for the A/S cultures. The minor
deviations from ideal predictions are due to: the slight inadequacies of the QSAR models;
slight deviations from simple additivity; and, experimental uncertainties. Nevertheless, this
degree of agreement may be acceptable in toxicity work considering that the predictions are
made without any experimental inputs.

3.5

O Polytox; P =0.76

»
(=}
]

O Activated sludge; 2 =0.81

g
t
]

LIRY

QSAR-predicted concentrations of
components in mixture [log (mg/L)]
N
o
L

1.0 -
| Line of perfect fit
0‘5 - T T 4 1 T | T T T Y
0.5 1.0 1.5 20 25 3.0 35
Experimentally measured concentrations of
components in mixture [log (mg/L)]

FIGURE 6 Comparison between predicted and experimental concentrations in mixtures.
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Conclusions
Thebcsicmmhcompletedduringmcfirsttwoyearsofthispmjecthasgenemedalargc
m’x:mbinlmxicitydaabaseforchcmicalsthatmofconcemtoUS Air Force. The findings
of this research will be of considerable benefit to practicing engineers, regulators and utilities.
The following is a summary of our findings:
1. The test culture evaluated in this research, Polytox, can be used as a good surrogate for
testing toxicity to activated sludge microorganisms.
2. The respirometeric technique developed in this research has been demonstrated to be a
simple, rapid, and reproducible toxicity testing technique.
3. The molecular connectivity index, MCI, approach is a simple and powerful one in
dcvelé)ging QSAR models to predict microbial toxicity.
4. The QSAR models devel in this research can be confidently used to predict
toxicity of new chemicals to activated sludge microorganisms.

5. The joint toxic effects of mixtures of chemicals assayed in this research can be
considered to be simply additive.

6. The QSAR approach developed in this rescarch can be used confidently to predict joint
toxic effects of chemicals similar to those assayed here, based solely on molecular

structural information, without any experimental inputs whatsoever.

Publications
Based on the research completed during the first two years, two MS thesis have been
successfully defended and several publications have been generated. These are listed below:

MS Thesis:

1. “Modeling Joint Effects of Mixtures of Organic Chemicals on Microorganisms”™
Mohsin, M., MS Thesis, New Mexico State University, May 1993.

2. ison of Interspecies Toxicity of Organic Chemicals Using QSAR Methods”

Sun, B., MS Thesis, New Mexico State University, Nov. 1993.

Cooference Presentations:
1. “Modeling and Analysis of Microbial Toxicity of Mixtures of Organic Chemicals”
IS:;;:dan, N. N., Eckenfelder Seminar Series, Vanderbilt University, Nashville, April
2. ;Predxcnng of Toxicity of Mixtures of Chemicals Using Models Based on Molecular
tructures”
Khandan, N. N., International Congress on Modeling and Simulation, Perth, Australia ,
Dec. 1993. [In Procpedings] '

Refereed Jounal Publications:

1. “Toxicity of Mixtures of Organic Chemicals to Microorganisms”
Khandan, N. N., et al; To appear in Water Research, Feb 1994.

2. "Estimating Toxicity of Organic Chemicals to Activated Sludge Microorganisms”
Sun, B., Khandan, N. N., Hall, E., Wang, X. H., Prakash, J., and Maynes, R.;
Submitted to Jour. Env. Engrg. Div. ASCE, July 1993.

3. "Analyzing and Modeling Toxicity of Mixtures of Organic Chemicals to
Microorganisms”

Khandan, N. N., Sun, B., Arulgnan.sdran, V. J., Mohsin, M., Wang, X. H., Prakash,
J., and Hall, N., Submitted to Water Sci. & Tech., July 1993.
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Acpendix |
Details of Respi S

The respirometer being used in our research was developed here at New Mexico
State University, and is commercially marketed by N-CON Corporation, Inc., NY. The
system has been recently modified in our laboratory to work either in the aerobic or
anaerobic mode. The reactors in this system are maintained at constant temperature
and pressure. Changes in headspace pressure, due to gas production (or
consumption), are sensed by a pressure (or vacuum) switch and are converted to gas
volume using Ideal Gas Laws, reactor volume, temperature and type of gas being
exchanged, and, monitored on a real time basis. These volumes can then be easily
related to biological activity in the reactor. A brief description of the system in the
aerobic mode is as follows.

In this mode, the CO, produced is absorbed by KOH pellets placed in the
headspace. Thus, consumption of O, results in a vacuum in the headspace. A vacuum

switch has its vacuum side connected to the headspace. The pressure side of the
switch is connected to a closed, constant pressure tank, thus providing a steady
reference pressure, eliminating any fluctuations due to barometric/atmospheric
variations. When the pressure differential across the switch exceeds 2.5 mm H20, a
signal is sent through the data acquisition system to the computer and, a precise puise
of oxygen from an oxygen cylinder is injected into the headspace. The computer keeps
track of the-number of pulses (or the amount) of oxygen supply as a function of time.
From this data, oxygen utilization rate can then be established. A schematic
arrangement of this system is shown below:

?y'xm': Magnetic stirrer system ~Thermostatically

controlled water-bath
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Appendix [I
Activated sludge test procedure

The A/S test cultures were obtained daily from the aeration tank of the nearby Las Cruces
Wastewater Treatment Plant that receives mainly municipal sewage. The MLSS and MLVSS of
activated sludge varied from 1,200 to 2,600 [mg/L]) and 1,020 to 1,970, [mg/L] respectively. The
reactors received 10 mL of activated sludge each. The test reactors were topped with tap water to
bring up to final volume of 60 mL while the control reactors were topped up to 62 mL. The test
reactors were dosed with the toxicants dissolved in 2mL of acetone. The quantities of the test
chemicals administered for each test were determined by trial and error to bring about inhibition
in the range of 2 0 to 70%. All the reactors were then capped with potassium hydroxide pellets in
holders attached to the caps. The contents of the reactors were kept mixed with magnetic stirrers.

The toxicity tests were run on a 12-reactor, computer-interfaced Comput-OX Respirometer (N-
CON Corporation, NY). The capped reactors were placed in the respirometer water bath
maintained at 25°C with continued supply of oxygen. The data acquisition system was then
initiated to monitor and record the oxygen uptake of each reactor for the next 12 hours.

The toxicity was measured in terms ICg,, which is the concentration of the chemical that

inhibited the microorganisms by 50% compared to the control reactor. The percent inhibition [%)
at different concentrations of the toxicant was taken as the reductions in oxygen uptake rates of
the spiked reactors compared to that of the control reactor. These % inhibition values were then
plotted against the respective concentrations, and from these plots, the concentration causing
50% inhibition, ICg, was determined.
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ARO,Exp. IC50, [log(mM/L))

Regression Summary
ARO.Exp. 1CS0, [log(mM/L)] vs. ARO,1xv

Count 8
Num. Missing 42
R 887
R Squared 187
Adjusted R Squared | .752
RMS Residual 294

ANOVA Table
ARO,Exp. IC50, [log(mM/L)] vs. ARO,1xv
DF Sum of Squares Mean Square F-Value P-Value

Regression 1 1.924 1924 | 22.209 .0033
Residual 6 .520 087

Total 7 2.443

Regression Coefficients

ARO,Exp. IC50, {log(mM/L)] vs. ARO,1xv
Coefficient  Std. Emor  Std. Coeff. t-Value P-Valve

Intercept 3.364 .703 33641 4.784 0030
ARO, 1xv -1,191 253 -887 1 4.713 0033
Confidence Intervals

ARO,Exp. ICS0, [log(mM/L)] vs. ARO,1xv
Cocfficient  95% Lower  95% Upper

Intercept 3.364 1.643 5.084
ARO,1xv 1191 ~1.809 573
lzRezressionPlot
2 S
l -
o
8 4
6 -
4 - o
.2 - o O
0
-2
1
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ARO,Ixv

Figure A-1II-1: Correlation between
1xv and logIC50 for ARO family




Regression Summary
HAL,Exp. IC50, {log(mM/L)] vs. HAL,0xv

Count 10

Num. Missing 40

R .868

R Squared 153

Adjusted R Squared | .722

RMS Residual 252
ANOVA Table

HAL,Exp. IC50, [log(mM/L)] vs. HAL,Oxv
DF Sum of Squares

Mean Square  F-Value P-Value

Regression 1 1.547 1.547 | 24.381 0011
Residual 8 .507 .063
Total 9 2.054
Regression Coefficients
HAL,Exp. ICS0, [log(mM/L)] vs. HAL,0xv

Coefficient Std. Emor Std. Coeff. t-Value P-Value
Intercept 2.781 410 2781} 6.776 0001
HAL:Oxv -446 .090 -868 | 4.938 0011
Confidence Intervals

HAL,Exp. IC50, [log(mM/L)] vs. HAL,Oxv
Coeflicient 95% Lower 95% Upper

Intercept 2.781 1.834 3.727
HAL,Oxv -446 -.655 -238
Regression Plot
14
o
=124
5 -
= .84
2
£ 6-
g ]
4 4
24
2 4
Y =2.781 - 446 * X;RA2= 753 o
0 T YT T
25 3 35 4 45 5 55
HAL Oxv

Figure A-III-2: Corelation between
Oxv and logIC50 for HAL family




ALK Exp. IC50, [log(mMAL))

Regression Summary
ALK Exp. IC50, [log(mM/L)] vs. ALK,Ixv
Count 5
Num. Missing 45
R 839
R Squared 703
Adjusted R Squared | .605
RMS Residual .181
ANOVA Table

ALK,Exp. ICS50, [log(mM/L)] vs. ALK,Ixv
DF Sum of Squares

Mean Square  F-Value P-Value

Regression | 1 .233 233§ 71171 .0758
Residual 3 .098 033
Total 4 331
Regression Coefficients
ALK,Exp. IC50, [log(mM/L)] vs. ALK,Ixv

Coefficient Std. Error  Std. Coeff. t-Value P-Value
Intercept 1.103 440 1.103 | 2.504 | .0874
ALK, ]xv -381 143 -839 | -2.668 | .0758
Confidence Intervals

ALK,Exp. ICS0, [log(mM/L)] vs. ALK, 1xv
Coefficient 95% Lower 95% Upper

Intercept 1.103 -299 2.505
ALK, 1xv -381 -.837 074
Regression Plot
1 o Y=1.103-.381 * X; RA"2=.703
. o)
| o]
UM A SSSN——_— 1
22 24 26 28 3 32 34 36 38 4
ALK, 1xv

Figure A-TI-3: Correlation between
1xv and 1ogIC50 for ALK family




Regression Summary
AKE,Exp. ICS0, [log(mM/L)] vs. AKE,lxv

Count 9
Num. Missing 41
R 934
R Squared 872
Adjusted R Squared | .854
RMS Residual 243
ANOVA Table
AKE,Exp. ICS0, [log(mM/L)) vs. AKE,Ixv
DF Sum of Squares Mean Square F-Value P-Value
Regression | 1 2.824 2824 | 47.723 0002
Residual 7 414 059
Total 8 3.238
Regression Coefficients
AKE,Exp. IC50, [log(mM/L)] vs. AKE,Ixv
Coefficient Std. Error  Std. Coeff. t-Value P-Value
Intercept 3.663 21 3.663 | 13.494 | <.0001
AKE, Ixv -.892 .129 -934 ) -6.908 1 .0002
Confidence Intervals
AKE,Exp. ICS50, [log(mM/L)] vs. AKE,1xv
Coefficient 95% Lower 95% Upper
Intercept 3.663 3.021 4,304
AKE,1xv -.892 -1.197 -.587
Regression Plot

Y =3.663 - .892* X;R*2 = 872

Figure A-Il14: Correlation between
1xv and logIC50 for AKE family
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AMLExp. IC50, (log(mM/L)] vs. AMI,Ixv

Count 6
Num. Missing 4
R 852
R Squared 726
Adjusted R Squared | .657
RMS Residual 142
ANOVA Table
AMILExp. IC50, [log(mM/L)] vs. AMI,1xv
DF Sumof Squares Mean Square F-Value P-Value
Regression | 1 213 2131 10.595 0312
Residual 4 .080 020
Total 5 294
Regression Coefficients
AMLExp. ICS0, [log(mM/L)] vs. AML, 1xv
Coefficient Std. Error  Std. Coeff. t-Value P-Value
Intercept 819 .190 8191 4.319] .0125
AML, Ixv -327 .100 -852 | -3.255 0312
Confidence Intervals
AMLEXxp. IC50, [log(mM/L)] vs. AMI,1xv
Coefficient 95% Lower  95% Upper
Intercept 819 293 1.346
AM], Ixv -327 -.605 -048
8 Regression Plot
] Y = .819- 327*X;R"2=.726
I41 0O
$.6
é -
3.5 -
.4 -
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1xv and logIC50 for AMI family
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Figure A-III-5: Correlation between
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Table A-IV-1: Comparison of Exp IC50 (A/S) vs. logP and LSER
N¢ Name Type Expl logP # LSER #

log[mM/L) Vi/100 == B «
1 Benzene ARO 1.10 2.13 0.491 0.59 0.14 0.00
2 Toluene ARO 0.50 265 0.591 0.55 0.11 0.00
3 Xylene ARO 0.19 3.18 0671 0.51 0.12 0.00
4 Ethylbenzene ARO 032 3.13 0671 0.53 0.12 0.00
5 Chlorobenzene ARO 0.14 298 0581 0.71 0.07 0.00
6 1,2 Dichlorobenzene ARO -048 3.38 0.671 0.80 0.03 0.00
7 1,3 Dichlorobenzene ARO -0.37 348 0.671 075 0.03 0.00
8 1,4 Dichlorobenzene ARO -1.04 338 0.671 065 0.03 0.00 e
9 1,2,4 Trichlorobenzene = ARO -0.72 398 0.761 0.75 0.03 0.00
10 2,4 Dimethyl phenol ARO 026 230 0.867 075 041 0.50 t
11 Methylene chloride HAL 137 115 0336 0.82 0.10 0.35
12 Dibromomethane HAL 096 0.83 0374 092 0.10 0.05
13 Carbon tetrachloride HAL 045 264 0514 028 0.10 000 t
14 1,2 Dichloroethane HAL 1.15 1.32 0442 0.81 0.10 0.00
15 1,1,1 Trichloroethane HAL 0.69 213 0519 049 0.10 0.00
16 1,1,2,2 Tetrachloroethane HAL 0.07 204 0617 095 0.10 0.13 ¢
17 1,2 Dichloropropane HAL 0.88 1.87 0548 0.81 0.10 0.00 t
18- Bromochloromethane HAL 1.31 141 ¢
19 Bromodichloromethane  HAL 0.18 e
20 Chlorodibromomethane HAL 0.00 te
21 Ethylene dibromide HAL 083 202 0528 0.75 005 0.00
22 1,2 Dichloroethylene HAL 1.11 163 0406 044 0.10 0.00
23 Trichloroethylene HAL 0.77 229 0.897 0.53 0.10 0.00 t
24 Tetrachloroethylene HAL 026 2.88 0.519 0.28 0.10 0.00
25 Cyclohexane ALK 020 344 0598 0.00 0.00 0.00

Note: t = testing chemicals
Note: e = excluded from analysis




Table A-IV-1 (cont'd)

N Name “Type ExpICS0 logP LSER
log{mM/L) Vi/100 =+ B (V]

26 Pentane ALK 32 362 0.5 X X X
27 Hexane ALK 026 4.11 0.648 0.00 000 0.00
28 Heptane ALK -023 4.66 0.745 000 0.00 0.00
29 Octane ALK -028 5.18 0.842 0.00 0.00 0.00
30 Bis (2-chloroethyl) ether AKE 133 277 0654 081 0.10 0.00
31 Ethanol AKE 276 025 0305 040 045 0.33
32 Propanol AKE 226 028 0402 040 045 0.33
33 Pentanol AKE 1.60 153 0593 040 045 0.33
34 Octanol AKE 0.17 297 0.882 040 045 0.33
35 n-Butyl acetate AKE 1.15 173 0716 046 045 0.00
36 Isobutyl acetate AKE 127 1.8 0716 051 045 0.00
37 n-Amyl acetate AKE 090 239 0813 049 045 0.00
38 Ethyl acetate AKE 1.79 073 0.521 055 045 0.00
39 Acetone AKE 292 -024 0380 071 048 0.00
40 Methyl ethyl ketone AKE 141 037 0477 0.67 048 0.00
41 Methyl isobutyl ketone =~ AKE 145 136 0670 063 0.48 0.00
42 Methyl n-propyl ketone  AKE 1.69 0.84 0.574 0.65 048 0.00
43-Cyclohexanone AKE 1.74 081 0571 0.75 053 0.00
44 n-Butylamine AMI 0.18 032 0535 031 0.6 0.00
45 t-Butylamine AMI 009 032 0535 031 069 0.00
46 Diethylamine AMI 0.13 036 0.535 025 0.70 0.00
47 Acetic acid AMI 069 032 0325 064 045 1.12
48 Cyclohexylamine AMI 002 133 0729 030 0.69 0.00
49 Ethanolamine AMI 0.27 -0.88 0444 088 0.69 0.00
50 Triethanolamine AMI 070 137 0.709 0.14 0.71 0.00

# Data sources: 1) M. J. Kamiet et al, Jour. Phys. Chem., 1987, 91, 7, 1996-2004; 2) J. P.
Hickey et al, Environ. Sci. Technol., 1991, 25, 1753-1760; 3) D. E. Leahy et al,
Chromatographia, Aug. 1986, 21, 8, 473-477; 4) M. J. Kamlet et al, Environ. Sci.
Technol., 1986, 20, 7, 690-695; 5) M. J. Kamlet et al, J. Am. Chem. Soc., 1984, 106, 2,
465-466; 6) R. W, Taft et al, J. Am. Chem. Soc., 1981, 103, 1080-1086; 7) R. W. Taft et
al, J. Org. Chem., 1984, 49, 2001-2005; 8) M. J. Kamlet et al, J. Org. Chem., 1983, 48,
2877-2888.

Note: t = testing chemicals




Regression Summary
Exp ICS0, log{mM/L] vs. 4 Independents
Count 47
Num. Missing 3
R 605
R Squared 366
Adjusied R Squared | .306
RMS Residual .706
ANOVA Table
Exp I1C50, logimM/L) vs. 4 Independents
DF Sumof Squares Mean Square F-Value P-Value
Regression | 4 12.084 3.021 ] 6.061] .0006
Residual 42 20.936 498
Total 46 33.020
Regression Coefficients
Exp ICS0, log{mM/L) vs. 4 Independents
Coefficient Sud. Emor Sid. Coeff. t-Value P-Value
Intercept 1.721 560 1.721 | 3.075] .0037
Vi/100 -2.578 .738 -452 1 -3495 0011
x* 372 406 J16] 918 3641
8 1.138 436 327 2608] .0125
& -.067 547 0161 -12| .9033
Confidence Intervals
Exp IC50, log[mM/L] vs. 4 Independeats
Coefficient 95% Lower 95% Upper
Intercept 1.721 592 2.851
Vi/100 -2.578 -4.067 -1.089
x* 372 -447 1.192
8 1.138 258 2.019
é -.067 -1.170 1.036




Regression Summary
ARO,JogICS0,mM/L vs. 3 Independents

Count 8
Num. Missing 6
R 996
R Squared 991
Adjusted R Squared | 985
RMS Residual o
ANOVA Table
ARO,JogICS0,mM/L vs. 3 Independents

DF Sum of Squares Mean Square  F-Value P-Value
Regression | 3 2425 .808 ] 152.162 0001
Residual 4 021 5.312E-3
Total 7 2.46
Regression Coefficients
ARO,JogIC50,mM/L vs. 3 Independents

Coefficient Std. Error  Std. Coeff. t-Value P-Value

Insercept 1.892 1.368 1.892] 13841 .2387
ARO,Vi/100 -3.618 730 -499 | 49571 .0077
AROx* -.149 1.080 -0291 -138] .8970
ARO8 7.379 3204 583 | 2303 0826
Confidence Intervals

ARO,JogIC50,mM/L vs. 3 Independents
Coeflicient 95% Lower 95% Upper

Intercept
ARO,Vi/100
ARO,x*
AROS8

1.892 -1.905 3.690
-3.618 -5.645 -1.592
-.149 -3.148 2.850
7319 -1.516 16.274




Adjassed R Squared | 303

RMS Residual 324

ANOVA Table
HAL,JogIC50,mM/L vs. 4 Independents
DF Sumof Squares Mean Square F-Value P-Value
Regression | 4 51 145 1382 | 4608
Residual 2 210 .105
Total 6 789
Regression Coefficients
HAL,logIC50,mM/L vs. 4 Independents
Coefficient Std. Error  Std. Coeff. t-Value P-Value
Intercept 2.665 2.736 2.665 9741 4329
HAL,VV100 -3.575 3.494 -7671 -1.023] .4138
HAL »* 343 829 226 A13 ] 7198
HAL.8 -4.084 10.135 -2131 -403] .7260
HAL A -01§ 1443 | -5399E-3] -010] .9926
Confidence Intervals
HAL,logIC50,mM/L vs. 4 Independents
Coefficient 95% Lower 95% Upper
Intercept 2.665 -9.109 14.439
HAL,Vi/100 -3.575 -18.607 11.458
HAL x* 343 -3.225 3.910
HAL B8 -4.084 -47.693 39.525
HALA -015 -6.223 6.193




Summary
ALK ,logIC50,mM/L vs. ALK,VI/100
Count 5
Num. Missing 9
R 821
R Squared 674
Adjused R Squared | .566
RMS Residual .189

ANOVA Table
ALK, logIC50,mM/L vs. ALK,VV100
DF Sum of Squares Mean Square  F-Value P-Value
Regression 1 222 222 6.211 0883
Residual 3 107 036
Total 4 329
Regression Coefficients
ALK,logICS0,mM/L vs. ALK,VV100
Coefficient Std. Emor  Std. Coeff. t-Value P-Value
Intercept 1.318 555 13181 2.373| .0982
ALK.Vi/100 -2.021 811 -821 ) -2492] .0883
Coafidence Intervals
ALK,logICS0,mM/L vs. ALK,VV/100
Coefficient 95% Lower 95% Upper
Intercept 1.318 -449 3.086
ALK,Vi/100 -2.021 -4.601 560




Regression
AKE,JogiC50,mM/L vs. 4 Independents

Count 9
Num. Missing 5
R 980
R Squared 961
Adjusted R Squared | .922
RMS Residual 178

ANOVA Table
AKE,logIC50,mM/L vs. 4 Independents
DF Sum of Squares Mean Square F-Value P-Value
Regression | 4 3.141 J851 247021 .0044
Residual 4 127 032
Total 8 3.269
Regression Coefficients
AKE,logIC50,mM/L vs. 4 Independents
Coefficient Std. Emor  Std. Coeff. t-Value P-Value
Intercept 3.146 1.131 3.146 ] 27821 .0497
AKE,Vi/100 -4.084 617 -92,] 66161 .0027
AKE x* 937 955 208 982} .3818
AKE.8 973 .800 JA85 ) 1217] .2904
AKE A .168 881 038 190 | .8582
Confidence Intervals
AKE,logIC50,mM/L vs. 4 Independents
Coefficient 95% Lower 95% Upper
Intercept 3.146 | 5916E-3 6.285
AKE,Vi/100 -4.084 -5.798 -2.370
AKEn* 937 -1.713 3.588
AKE.8 973 -1.247 3.194
AKE A .168 -2.278 2.614




AMILJogIC50,mM/L vs. 4 Independents

Count 7
Nusa. Missing 7
R 927
R Squared 859
Adjusted R Squared | .576
RMS Residual .184

ANOVA Table
AMI,JlogIC50,mM/L vs. 4 Independents
DF Sum of Squares Mean Square F-Value P-Value

Regression | 4 411 Q031 3.036| .2628
Residual 2 068 034

Total 6 479

Regression Coefficients

AMI1,logIC50,mM/L vs. 4 Independents
Coefficient Std. Emmor Std. Coeff. t-Value P-Value

Intercept -20.178 8.082 -20.178 | -24971 .1299

AMLVi/100 272 999 136 2721 8111

AMlLx* 414 452 381 917 | .4561

AMLES 28.922 11.635 9.513 | 24861 .1308

AMIL4 6.696 2.486 10035 2694 .1146
Confidence Intervals

AMI,logIC50,nM/L vs. 4 Independents
Coefficient 95% Lower 95% Upper

Intercept 20178 | -54.953 14.597
AMLVi/100 272 4.025 4.568
AMIz* 414 -1.531 2.360
AMI8 28922 | -21.138] 78981
AMILA 6.696 -4.000 17.393
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Exp ICS0, logfmM/L)

mary
Exp IC50, loglmM/L] vs. log P

Count 438
Nem. Missing 2
R 641
R Squared 411
Adjusted R Squared | .398
RMS Residual 654
ANOVA Table
Exp IC50, logimM/L] vs. log P
DF Sum of Squares Mean Square F-Value P-Value
Regression | 1 13.721 13.721 § 32.090 | <.0001
Residual 46 19.668 A28
Total 47 33.389
Regression Coefficients
Exp ICS0, log{mM/L] vs. log P
Coefficient Std. Error  Std. Coeff. t-Value P-Value
Intercept 1.469 .164 1469 | 8953 | <.0001
log P -.391 069 -641 | -5.665 | <.0001
Confidence Intervals
Exp IC50, log[mM/L) vs. Jog P
Coefficient 95% Lower 95% Upper
Intercept 1.469 1.139 1.799
log P -.391 -.529 -252
Regression Plot
95% Confidence Bands
Y =1.469 - 391 * X; RA2 = 411
(o]

Figure A-V-1: Correlation of experimental
logIC50 values and logP for the entire data set




ARO JogICS0,mM/L

Regression Summary
AROJogIC50,mM/L vs. ARO,logP
Count 8
Num. Missing 6
R 958
R Squared 917
Adjusted R Squared | .904
RMS Residual .184
ANOVA Table
ARO,10gIC50,mM/L vs. ARO JogP
DF Sum of Squares Mean Square  F-Value P-Value
Regression | 1 2.244 2244 | 66.616 | .0002
Residual 6 202 034
Tota! 7 2.446
Regression Coefficients
ARO,10gIC50,mM/L vs. ARO,logP
Cocfficient Std. Emmor  Std. Coeff. t-Value P-Value
Intercept 3.258 .394 3.258 | 8.266 ] .0002
ARO,logP -1.019 125 -958 | -8.162| .0002
Confidence Intervals
ARO,logIC50,mM/L vs. ARO,JogP
Coefficient 95% Lower 95% Upper
Intercept 3.258 2.294 4223
ARO,logP -1.019 -1.325 -714
Regression Plot

' e e e -
Vo v o o~ N
g . s L. 0 2 b a it b

o
3\ O
-4 -
61 v=3258-1.019*X;RA2 = 917
-8 P T T
2 22 24 26 28 3 32 34 36 38 4 42

ARO,logP

Figure A-V-2: Correlation of experimental
logIC50 values and logP for ARO family




Regression Summary

HAL,logICS0,8M/L vs. HAL,logP
Count 8
Num. Missing 6
R .839
R Squared .705
Adjusted R Squared | .655
RMS Residual 214
ANOVA Table
HAL,JogICS0,mM/L vs. HAL,logP
DF Sum of Squares Mean Square F-Value P-Value
Regression .655 6551 143161 .0091
Residual 6 274 046
Total 929
Regression Coefficients
HAL,logIC50,mM/L vs. HAL,logP
Coefficient Std. Emor  Std. Coeff. t-Value P-Value
Intercept 1.745 221 1.745] 7.902 | .0002
HAL JogP -470 124 -8391 -3.784 | .0091
Confidence Intervals
HAL,logIC50,mM/L vs. HAL,logP
Coefficient 95% Lower 95% Upper
Intercept 1.745 1.205 2.286
HAL JogP -470 -774 -.166
Regression Plot

[+,
sl aasad s,

HAL JogIC50,mM/L
5

4 1
Y=1.745- 47* X; RA2=.705 o
'2 L L L L . B L]
a5 1 125 15 175 225 25 275 3
HAL JogP

Figure A-V-3: Correlation of experimental
logIC50 values and logP for HAL family




ALK, logIC50,mM/L

ummary
ALK JogIC50,mM/L vs. ALK JogP

Count 5
Num. Missing 9
R 836
R Squared 699
Adjusted R Squared | .599
RMS Residual 182

ANOVA Table
ALK,JogIC50,mM/L vs. ALK logP
DF Sum of Squares Mean Square F-Value P-Value
Regression | 1 230 230} 6977] .0776
Residual 3 099 033
Total 4 329
Regression Coefficients
ALK, logICS0,mM/L vs. ALK logP
Coefficient Std. Emmor  Std. Coeff. t-Value P-Value
Intercept 1.342 533 1.342 ] 2517 | .0864
ALK JogP -.331 125 -836 | -2.641 0776
Confidence Intervals
ALK JogICS0,mM/L vs. ALK logP
Coefficient 95% Lower 95% Upper
Intercept 1.342 -.355 3.040
ALK JlogP -331 -.731 068
Regression Plot

Y =1342-.331 * X; RA2 = .699

LIRS R S | I'g

v—— v
34 36 38 4 42 44 46 48 5 52

ALK JlogP

Figure A-V4: Correlation of experimeatal
logIC50 values and logP for ALK family




AKE,JoglC50,mM/L vs. AKE logP
Count 9
Num. Missing 5
R 896
R Squared 802
Adjusted R Squared | .774
RMS Residual 304

ANOVA Table
AKE,logIC50,mM/L vs. AKE,JogP
DF Sum of Squares Mean Square F-Value P-Value
Regression [ 1 2.622 2622 | 28.366 | .0011
Residual 1 647 092
Total 8 3.269
Regression CoefYicients
AKE,JogIC50,mM/L vs. AKE,logP
Coefficient Std. Eror  Std. Coeff. t-Value P-Value
Intercept 2438 .161 2438 | 15.166 | <.0001
AKE logP -5719 109 -896 | -5326 | .0011
Confidence Intervals
AKE,JogIC50,mM/L vs. AKE, logP
Coefficient 95% Lower 95% Upper
Intercept 2438 2.058 2.818
AKE JogP -579 -.836 -322
3 Regression Plot
2.8 4 ° Y =2438- 579 * X; RA2 = 802

Figure A-V-§: Correlation of experimental
logIC50 values and logP for AKE family




AMLlogICS0,mM/L

Figure A-V-6: Correlation of experimental
logICS0 values and logP for AMI family

Num. Missing 7
R 060
R Squared 3.583E-3
Adjusted R Squared .
RMS Residual 309
ANOVA Table
AMILJogICS0,mM/L vs. AMLlogP
DF Sum of Squares Mean Square F-Value P-Value
Regression 1 1.715E-3 1.715E-3 018 .8986
Residusl 5 477 095
Total 6 A79
Regression Coefficients
AMLlogIC30,mM/L vs. AMLJogP
Coefficient  Std. Emor  Std. Coeff. t-Value P-Value
Intercept 305 129 3051 23571 .0650
AMllogP -021 155 -060]| -134 8986
Confidence Intervals
AMI,JogICS0,mM/L vs. AML logP
Coefficient 95% Lower 95% Upper
Intercept 305 -028 637
AMLlogP -021 -420 378
" Regression Plot
i : (o) o
6 - Y =305 - .021 * X; R*2 = 3.583E-3
1
.5
4
.3 -J o
2 - o
.1 4 oo
o LI LB L] ¥ | 1 1 L} o
4 275 -5 .25 0 25 5 5 1 125 15
AMLlogP
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Tab A-VIII-1: Comparison of ICS0 values between QSAR predictions and Exp. results of different A/S source:

_QSAR model \R model _ Exp. results of dill, sources
ID# Chemical name Type Oxv lxv MW ~ predictions This stu&? §inm's \Y Eﬁ's
mg/mM lCS() 1CS0
m, m mg&
T Benzene ARO —2.00 78.11 D %9‘5 %o
2 Toluene ARO 241 9214 287 110
3 Xylene ARO 2.82 106.17 107 166
4 Ethylbenzene ARO 297 106.17 n 222 130
5 Chlorobenzene ARO 247 112,56 298 158 310 140
6 1,2 Dichlorobenzene ARO 296 147.01 101 49
7 1,3 Dichlorobenzene ARO 295 147.01 104 63
8 14 Dichlorobenzene ARO 295 14701 104 14
9 1,2,4 Trichlorobenzene ARO 343 18145 34 35
10 2.4 Dimethyl phenol ARO 296 122.17 84 224 190
11 Methylene chloride HAL 297 84.93 2,429 1,994
12 Dibromomethane HAL 463 173.85 904 1,572
13 Carbon tetrachloride HAL 503 153.82 530 432 130 240
14 1,2 Dichloroethane HAL 3.68 98.96 1,365 1,385 470
15 1,1,1 Trichloroethane HAL 490 13341 526 659 450 360
16 1,1,22 Tetrachloroethane HAL  5.68 167.85 297 197 130
17 1,2 Dichloropropane HAL 455 11299 638 861 520
18 Bromochloromethane HAL 3.80 129.39 1,578 2,672
19 Bromodichloromethane HAL 4.80 163.83 715 249
20 Chlorodibromomethane HAL 5S¢ 208.29 384 206
21 Ethylene dibromide HAL 513 187.87 585 1,271
22 1,2 Dichloroethylene HAL 342 9694 1,747 1,249
23 Trichloroethylene HAL 447 131.39 805 770 130 260
24 Tetrachloroethylene HAL 553 165.83 342 299 170
25 Cyclohexane ALK 250 84.16 119 133 29
26 Pentane ALK 241 7215 110 150
27 Hexane ALK 291 86.18 85 47
28 Heptane ALK 341 10021 64 58
29 Octane ALK 391 1423 47 60
30 Bis (2-chlorocthyl) ether AKE 3.18 14301 959 3,025
31 Ethanol AKE 1.02 4607 26,096 26,311 24,000
32 Propanol AKE 1.52 60.1 12,191 10,875 9,600
33 Pentanol AKE 252 88.15 2,293 3,528
34 Octanol AKE 402 130.23 156 194 200
35 n-Butyl acetate AKE 290 116.16 1,384 1,649
36 Isobutyl acetate AKE 275 116.16 1,884 2,156
37 n-Amyl acetate AKE 3.40 130.19 556 1,031
38 Ethyl acetate AKE 1.90 88.11 8,189 5,427
39 Acetone AKE 120 58.08 22,731 48,619 16,000
40 Methyl ethyl ketone AKE 199 7211 5571 1,873
41 Methyl isobutyl ketone AKE 2.62 100.16 2,122 2,811
42 Methyl n-propy! ketone AKE 226 86.13 3,822 4,267




Table A-VIII-1 (cont'd)

QSAR model _ Exp. results of diff. sources
ID# Chemical name Type Oxv 1xv MW T~ predictions This EEE; Blun's V&Gs
mg/mM 1CS0 IC50 ICS0 1CS0
m m m m
"33 Cyclohexanone T\KE 241 98.15 ﬂfm %T—L_LSA
44 n-Butylamine 211 73.14 98 111
45 t-Butylamine AMI 178 73.14 126 90
46 Diethylamine AMI 212 73.14 98 100
47 Acetic acid AMI 093 60.65 198 299
48 Cyclohexylamine AMI 264 99.18 90 103
49 Ethanolamine AMI 122 61.08 161 115
S0 Triethanolamine AMI 3.39 149.19 | 741
New chemicais:
51 Pentachiorophenol ARO 473 266.34 1 3
52 Phenol ARO 213 94.11 625 1,100 520
53 Benzyl alcohol ARO 2.73 108.13 140 2,100
54 m-Cresol ARO 254 108.14 236 440
55 p-Cresol ARO 254 108.14 236 260
56 2 Chlorophenol ARO 2.61 128.56 232 360
57 3 Chlorophenol ARO 2.61 128.56 232 160
58 4 Chlorophenol ARO 2.61 128.56 232 98
59 2,3 Dichlorophenol ARO 310 163 77 210
60 2,5 Dichlorophenol ARO 310 163 77 180
61 2,6 Dichlorophenol ARO 310 163 77 410
62 2,3,4 Trichlorophenol ARO 3.58 19745 25 8
63 2,3,6 Trichlorophenol ARO 3.58 19745 25 14
64 24,5 Trichlorophenol ARO 3.58 19745 25 23
65 4 Bromocthane ARO 3.02 173.01 101 120
66 1,1,2 Trichlorocthane HAL 490 133.41 526 240 440
67 Chloroform HAL 397 119.39 1,223 640 500
68 1,1 Dichiorocthane HAL 384 98.96 1,158 620
69 1,1,1,2 Tetrachlorocthane HAL  5.74 167.85 279 230
70 Pentachloroethane HAL 6.74 202.3 120 150
7) 1 Chloropropane HAL 354 78.54 1,251 700
72 2 Chloropropane HAL 37 78.54 1,051 440
73 1,3 Dichloropropane HAL 438 112,99 760 210
74 12,3 Trichloropropane HAL 5.39 147.43 351 290
75 1 Chlorobutane HAL 4.25 92.57 711 230
76 1 Chloropentane HAL 5.03 106.6 368 68
77 1 Chlorohexane HAL 5.66 120.62 218 83
78 1,3 Dichloropropene HAL 4.12 112.99 992 120
79 5 Chloro 1 pentyne HAL 433 102 722 86
80 Methanol AKE 045 3204 58518 20,000
81 1 Butanol AKE 202 74.12 5.384 3,900
82 Ethyl ether AKE 199 74.12 5,726 17,000
83 2 Butanone AKE 1.77 72.11 8,753 11,000
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S

8 CHEMICAL MIXTRUE LIST COMBINATIONS

Mixture Chemical Chemical Name Statistics
Ne Ne
8-1 12 Dibromomethane
30 Bis (2-chioroethyl) ether
32 Propanol "2 = G.115
a3 Pentanol
35 n-Butyl acetate TU= 0.517
36 isobutyl acetate
40 Methyl ethyl ketone
41 Methyl isobutyl ketone
8-2 1 Benzene
2 Toluene
12 Dibromomethane "2 = 0.824
18 Bromochloromethane
35 n-Butyl acetate TU= 0.1586
36 Isobuty! acetate
40 Methyt ethyl ketone
41 Methyl isobuty! ketone
8-3 22 1,2 Dichloroethylene
23 Trichloroethylene
32 Propanol "2 = 0.835
33 Pentanol
3%  n-Butyl acetate TU= 0.147
36 Isobutyl acetate
40 Methyl ethyl ketone
41 Methy! isobutyl ketone
84 4 Ethylbenzene
12 Dibromomethare
17 1,2 Dichloropropane "2« 0.904
18 Bromochloromethane
32 Propanol TU= 0.1526
33 Pentanol
34 Octanol
36 Isobuty! acetate
8-5 4 Ethylbenzene
10 2.4 Dimethyi phenol
18 Bromochloromethane "2 = 0.92
22 1,2 Dichloroethylene
23 Trichloroethylene TU= 0.1373
32 Propanol
33 Pentanol
36 Isobutyl acatate
8-6 2 Toluene
4 Ethylbenzene
5 Chilorobenzene "2 = 0.953
10 2,4 Dimethy! phenol
15 1,1,1 Trichlorosethane TU= 0.1483
21 Ethylene dibromide
35 n-Butyi acetate
40 Methyl ethyl ketone




Inhibition

%

TU vs. % INHIBITION
MIXTURE 8-2

100

80

y = - 16.962 + 422.33x

R*2 = 0.824

- [ ]
0 0.1586
-20 r Y na T V M
0.05 0.10 0.15 0.20
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& % Inhibition
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Inhibition

%

Inhibition

%

TU vs. % INHIBITION
MIXTURE 8-3

y = 2.8636 + 320.71x s

RA2 = 0.835 a

o-
i 0.147
.20 v — —
0.05 0.10 0.15 0.20
TU
TU vs. % INHIBITION
MIXTURE 8-4
80
y = - 23.803 + 483.62x .
1 e
RA2 = 0.904 _ R
60 7z
]
r
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a % Inhibition
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a % Inhibition
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%

Inhibition

%

TU vs. % INHIBITION
MIXTURE 8-5

80

y = - 8.8049 + 428.35x

RA2 = 0.920 .

0.1373
-20 4
4
o—— N
0.05 0.10 0.15 0.20
TU
TU vs. % INHIBITION
MIXTURE 8-6
100
{ y= -36584 + 583.78x
. a
RA2 = 0.953 o
]
a
a
0.1483
<
) D—— r —_—
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TU

s % Inhibition
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s % inhibition
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10 CHEMICAL MIXTRUE LIST COMBINATIONS
Mixture Chemical Chemical Name

Statistics

10-1

Benzene

Toluene
Ethybenzene
Chiorobenzene

2,4 Dimethyl phenol
Dibromomethane
Bromochioromethane
Propanol

Pentanol

laobutyl acetate

"2 =

TU=

0.837

0.1572

10-2

Ethylbenzene
Chlorobenzene

2.4 Dimethy! phenol
Dibromomethane
Bromochioromethane
1,2 Dichioroethyiene
Trichloroethylene
Propanol

Pentanol

Isobutyl acetate

"2 =

TU=

0.863

0.1604

10-3

28888RBIcnr| [8BRBRNERSwr||8BBERSnarn =T

Ethybenzene
Chiorobenzene

2,4 Dimethyl phenol
1,2 Dichloropropane
Bromochioromethane
1,2 Dichloroethylene
n-Butyl acetate
Isobuty! acetate

Methyl ethyl ketone
Methyl isobutyl ketone

"2 =

TU=

0.947

0.1703

10-4

N HuN

Toluene

Ethybenzene
Chlorobenzene

2,4 Dimethyl phenol
Bromochloromethane
1,2 Dichloroethylene
n-Butyl acetate
isobutyl acetate

Methyl ethyl ketone
Methyi isobutyi ketone

"2 =

TU =

0.963

0.1496

10-§

52888888

1,2 "ichioropropane
Ethanol

Propanol

Pentanol

Octanol

n-Butyl acetate
Isobutyl acetate
Methyl ethyl ketone
Methyi isobutyl ketone
Cyclohexanone

"2s=

TU=

0.987

0.1843




10 CHEMICAL MIXTRUE LIST COMBINATIONS (Continued)

Mixture Chemical Chemical Name Statistics
Ne N
10-6 1 Benzene
2 Toluene
12 Dibromomethane "= 0.931
18 Bromochloromethane
31 Ethanol TU= 0.1835

35 n-Butyl acetate

36 isobutyl acetate

40 Methy! ethyl ketone

4 Methyl isobutyl ketone
43 Cyclohexanone

10-7 12 Dibromomethane
18 Bromochioromethane
22 1,2 Dichloroethylene "2 = 0.906
23 Trichloroethylene
31 Ethanol TU= 0.1913
32 Propanol
33 Pentanol

40 Methyl ethyl ketone
41 Methyl isobuty! ketone
43 Cyclohexanone
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